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Kim Greene - Introduction 
■ Owner of Kim Greene Consulting, Inc. 

■ Extensive iSeries background 

■ Services offered include: 
─System and application performance optimization 
─Administration 
─Upgrades 
─Troubleshooting 
─Health, performance, security, etc. checks 
─Migrations 
─Custom development 
─Enterprise integration 

■ Technical writer for Systems Magazine, IBM i Edition 

■ Blog: www.bleedyellow.com/blogs/dominodiva 

■ Twitter: iSeriesDomino 
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Amy Hoerle - Introduction 

■ 1st “real” job was as an AS/400 administrator in 1997 

■ Worked on IBM Lotus Domino support team for 11 ½ years 

■ Specializing in Lotus products on IBM i & Windows since 1999 
─Installing, configuring, tuning, debugging and troubleshooting 

■ DAOS expert 

■ XPages development 

■ Author of numerous technotes, articles and “Optimizing Domino 
Administration” IBM Redbooks Wiki 

■ Blog: www.bleedyellow.com/blogs/ilotusdomino 

■ Twitter: iLotusDomino 
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Agenda 
■ Identifying the problem 

■ Resources – what to look for 

■ Critical detective tools 

■ Alleviating bottlenecks 

■ Example time!! 
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Identifying The Problem 

■ What is the issue? 
─ How does the problem manifest itself? 
─ What does the problem look like? 
─ What are indicators there is a problem? 
─ What is state of normalcy for: 

– CPU utilization 
– Disk I/O rates 
– Network bandwidth 
– Transactions per minute / hour 
– Client or web response times 
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Identifying The Problem 
 

■ Is it repeatable? 
─ Need ability to collect data to resolve the issue 
─ The process of resolution is iterative 

■  Perceived or real? 
─ Performance data collection BEFORE problems occur is critical! 

■ Certain users? Specific locations? 
─ How pervasive is the problem? 

– Which locations or groups are having performance issues? 
─ What is the pattern of slowness? 

– Daily 
– Hourly 
– Types of interfaces / connections 
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Identifying The Problem 

■ Where is the issue coming from? 
─ A resource 
─ Or resource management 
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Identifying The Problem 

■ Critical to use a layered approach to individual resources and management of 
resources to isolate performance issues 
─ What is the impact of each of these on the other? 
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Identifying The Problem 
 

■ Is it a throughput or bandwidth issue? 
─ Throughput 

– Constrained by ability to use a resource 
• A resource management issue 

– Tend to characterize OS or Domino / application issues 
─ Bandwidth 

– Constrained by not having enough resources 
– Tend to characterize resource issues 

 

■ It may be a combination of the two 
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Agenda 
■ Identifying the problem 

■ Resources – what to look for 

■ Critical detective tools 

■ Alleviating bottlenecks 

■ Example time!! 
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CPU 
■ Typically an issue of over or under consumption 

■ How many CPUs are assigned? 
─ Partial processors can be cause for concern 

■ How configured? 
─ Physical system 
─ LPAR 
─ VM 

■ What other work is running on the server / LPAR / VM? 

■ Managed via: 
─ Hardware 
─ Operating system 
─ Domino 
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CPU Too High 
■ Finding the problem 

─ Need to look at each component 
 
 
 
 
 
 
 
 

 

■ Analyze thread or process using bulk of CPU to isolate root cause of CPU 
consumption  

■ server_show_performance=1 
─ Displays server performance events on the console 
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CPU Very Low 
■ What is the issue? 

─ Need to look at each component 
 
 
 
 
 
 

■ Need to look at system as a whole to hone in where bottleneck is 

■ Resource management issue 
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Memory 
■ Critical for optimal performance 

■ High paging and faulting can dramatically impact performance of Domino 
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Memory 
■ Important to look at system level and Domino level 

─ IBM i example 
 
 
 
 
 
 

─ Drilling down further we see the memory pool involved is where all of the Domino servers are 
running 
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Disk 
■ All aspects of disk I/O need to be examined 

■ Assess Domino and the operating system’s impact to disk performance 
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Disk 
■ The impact of uneven disk I/O 

■ Disk utilization was great, customer was running out of disk space 

 

 

 

 

■ After addition of 3 much larger drives 
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Disk Defragmentation – Are You Affected? 
■ Monitor split I/O per second 

─ Ratio for which I/Os to disk are split into more than one I/O 
─ If split I/Os > 10% of total I/O = PROBLEM!! 
 

■ Ensure operating system I/O is good before focusing on Domino I/O 
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Network 
■ One of the most difficult areas to analyze 

■ Need to check many things: 
─ Server configuration 
─ DNS configuration and availability 
─ Firewall configuration 
─ Host files (if being used) 
─ Connection documents 

 

■ Network retransmissions are cause for concerns 
─ Typically find to be an issue for users in specific locations 

■ Avoid ARP storms 
─ Ensure each NIC has its own route  
─ Prevent intelligent switches from dynamically generating route tables 
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Patterns, Patterns, Patterns …. 
■ It’s all about the patterns … 
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Agenda 
■ Identifying the problem 

■ Resources – what to look for 

■ Critical detective tools 

■ Alleviating bottlenecks 

■ Example time!! 
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Critical Detective Tools 
■ System statistics 

■ Domino statistics 

■ DDM 

■ NSDs 

■ Memory dumps 

■ Semaphore debug 

■ Call stacks 

■ Activity logging 

■ Web application tools 
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System Statistics 
■ Need tool to gather statistics for system as a whole 

■ Capture statistics on: 
─ CPU 
─ Memory 
─ Disk I/O 
─ Network I/O 

■ Some examples 
─ Perfmon 
─ Perfpmr 
─ nmon 
─ vmstat 
─ Performance navigator 
─ iostat 
─ netstat 
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Domino Statistics 
■ Great starting point when debugging performance issues 

─ Statistics collection (statrep.nsf) 
– Stats and Collect tasks 

─ sh stat 

■ Be sure to collect platform statistics too!! 

■ Critical areas of focus: 
─ Domino memory management 
─ Cache sizes 

– Group cache 
– Name lookup cache 
– Database cache 

─ Transaction rates 

■ Get to know “normal” 

 

 
 
 
 
 
 
 
 

─ HTTP statistics 
─ Mail statistics 
─ Cluster and replication statistics 
─ Queue depths 
─ Full text indexing 
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Domino Domain Monitoring (DDM) 
■ Great for determining where to focus within Domino applications 

─ Probe type = Application Code 
─ Probe subtypes 

– Agents behind schedule 
– Agents evaluated by CPU usage 
– Agents evaluated by memory usage 
– Long running agents 

 
─    Processes to probe = AMGR or HTTP 

 
─ Embedded probes can be used to instrument code 
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The NSD 
■ Provides snapshot of what’s happening on the server when taken: 

─ System activity 
─ Statistics 
─ Configuration 
─ Stack dumps 

– Shows routines or functions called for each thread in a process 
─ Memcheck 

– Shows how memory is being used 
– System memory, handle, network, in-use database structures, files usage 
– Open databases and documents 

─ Other important sections 
– Resource usage summary 
– NSF DB-cache 
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Call Stacks 
■ Critical tool for understanding what is happening in a thread 

■ Use when suspect hidden bottleneck 
 

 Lib Name     Pgm Name     Mod Name    Statement    Procedure Name                                                                 

   ----------   ----------   ----------   ----------   ----------------------------------------- 

   QSYS         QLESPI       QLECRTTH     0000000018   LE_Create_Thread2__FP12crtth_parm_t                                            

   QSYS         QP0WPINT     QP0WSPTHR    0000000019   pthread_create_part2                                                           

   QDOMINO852   LIBNOTES     THREAD       0000000020   ThreadWrapper                                                                  

   QDOMINO852   LIBHTTPSTA   HTTHREAD     0000000008   HTThreadBeginProc                                                              

   QDOMINO852   LIBHTTPSTA   HTWRKTHR     0000000010   ThreadMain__14HTWorkerThreadFv                                                 

   QDOMINO852   LIBHTTPSTA   HTEVENT      0000000002   Wait__7HTEventFUl                                                              

   QDOMINO852   LIBNOTES     OSSEM        0000000009   OSWaitEvent                                                                    

   QDOMINO852   LIBNOTES     OSSEM        0000000089   WaitOnNativeSemaphore                                                          

   QDOMINO852   LIBNOTES     OSSEM        0000000018   WaitForThreadSem                                                               

   QSYS         QP0WPTHR     QP0WCOND     0000000055   pthread_cond_timedwait                                                         

   QSYS         QP0WPINT     QP0WSCOND    0000000107   wait__PthreadConditionFP7Qp0wTcbP9QpMutex                           

   QSYS         QP0WPINT     QP0WTCB      0000000038   blockMyThread__7Qp0wTcbFiT1  
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Memory Dumps 
■ Provides details on memory contents 

─ Find out where memory is allocated from a Domino perspective 

■ Pool allocations by process ID 
*** Dump of Pools for ProcessID 00000229 (HTTP)  

                                        largest      ---- P o o l     A l l o c a t i o n s ----                 Free  List  Iterations  

pool       addr         size   used        free    total     skip   search  failure  success    frees     total     alloc      free  created  

   1 D691E7024101BEC0 14648K 13911K 94%     71K   141179      116   141063       26   141037   139160   1757014    800200    956814    

   2 FA83CEBEA3002000 14648K  6464K 44%      0b    35755        0    35755        0    35755    35175    403963    171251    232712  05/04/2009 09:31:22  

3 process private memory pools  

28 MB total pools size  

19 MB total pools used  

69.55% pool utilization  

■ Can be helpful to determine bottlenecks and memory leaks 

■ Memcheck  
─ Good to use in combination with memory dumps 
─ Provide details on Java memory utilization 
─ Usage summary and top 10 sections are key 
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MEMCHECK 
■ Notes memory usage summary 

<@@ ------ Notes Memory -> Usage Summary -> Shared Memory Stats :: (Shared) (Time 16:26:20) ------ @@> 

TYPE             : Count    SIZE      ALLOC     FREE     FRAG OVERHEAD  %used  %free 

Static-DPOOL:    49 496194304 472697000  23439088      0   114034          95%     4% 

VPOOL          :     82    5002704       486884     4295456      0   222108           9%    85% 

POOL            :     93    5377312     2124984     2778016      0   479224          39%    51% 

Overall           :    49 496194304 465623528  30512560      0   815366          93%     6% 

■ Top 10 memory block usage 
<@@ ------ Notes Memory -> Usage Summary -> Top 10 Memory Block Usage -> Memhandles By Size :: (Shared) (Time 16:26:20) ------ @@> 

Type  TotalSize      Count    Typename 

----------------------------------------------------------- 

0x82cd  417243136        106  BLK_UBMBUFFER             

0x82cc    8140800        106  BLK_UBMBCB                

0x8252    4194322          4  BLK_NSF_POOL              

0x8a05    3000000          1  BLK_NET_SESSION_TABLE     

0x8439    2919518        313  BLK_BPOOL_PERPROCESS_INFO 

0x834a    2621442          3  BLK_GB_CACHE              

0x841c    2004708        116  BLK_VARRAY_CHUNK          

0x826d    1048576          1  BLK_NSF_DIRMANPOOL        

0x8252    1048576          1  BLK_NSF_POOL              

x8311    1048576          1  BLK_NIF_POOL              
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Semaphore Debug 
■ Semaphore defined 

─ Software switch that ensures the synchronization of execution of tasks to ensure one process 
has completed before another begins 

■ Semaphore timeout 
─ Occurs when a resource has been locked for too long 

– By default, this is 30 seconds 

■ Enable semaphore debug to determine root cause of problem 
─ DEBUG_THREADID=1 

– Helpful to identify process or thread holding a semaphore 
─ DEBUG_CAPTURE_TIMEOUT=1       
─ DEBUG_SHOW_TIMEOUT=1  
─ DEBUG_SEM_TIMEOUT=X 

– Use to specify how long a semaphore must timeout before being reported 

■ What to look for 
─ Slow processes 
─ Databases with long locks    
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Activity Logging and Activity Trends 
■ Records user activity by: 

─ Person 
─ Database 
─ Access protocol 

■ Enabled in the configuration document 

■ Great for debugging performance slowdowns and CPU spikes 
─ Activity recorded allows determination if: 

– Specific application caused CPU spike or performance slowdown 
– Spike in user activity is cause of CPU spike or performance slowdown 

■ A great way to: 
─ Compare workloads across servers 
─ Compare user activity over time 
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Web Application Tools 
■ tell http show thread state 

─ Determine what forms, views or agents are associated with HTTP requests 

■ Example usage 
─ Agents 

– Is it an issue with agent concurrency? 
─ Forms 

– What type of lookups are being done? 
• Lookup source can have dramatic impact on performance 

– Profile document lookup compared to pulled from view in external database 
─ Views 

– Which views are being used? 
– How large are the views? 
– How frequently should a view be updated? 
– What is the view update setting? 
– Is enough memory available for the view 

• Need 2 times the view size for optimal view rebuild time 
 



 |    © 2012 IBM Corporation 34 

Agenda 
■ Identifying the problem 

■ Resources – what to look for 

■ Critical detective tools 

■ Alleviating bottlenecks 

■ Example time!! 
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Alleviating Bottlenecks 
■ Critical things to remember: 

─ Relieving bottleneck in one area, may cause new bottleneck to appear 
─ Resolution of an issue may be dependent on what appears to be a totally unrelated area 
─ It’s an iterative process 

 

 



 |    © 2012 IBM Corporation 

Domino Configuration – Where to Look For Bottlenecks 
■ Number of worker threads and concurrent thread processing 

─ Server threads 
– Number of servers threads available for processing 

• Server.Users.Peak 
• Server.WorkThreads 

– Need sufficient threads for number of users 
– Default size: Server_Pool_Tasks * # of NRPC ports 

─ Server_Max_Concurrent_Trans 
– Controls number of threads allowed to execute at the same time 
– Default size: 20 

─ Server_Pool_Tasks 
– Controls number of threads in IOCP thread pool 
– Check these statistics: 

• Server.ConcurrentTasks 
• Server.ConcurrentTasks.Waiting 

– Should be no waiting 
– Default size: Server_Max_Concurrent_Trans * 2 
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Domino Configuration – Where to Look For Bottlenecks 
■ Unified Buffer Manager 

─ Critical Domino buffer pool, buffers data between disk and the NIF 
─ Statistics to watch: 

– Database.Database.BufferPool.Maximum.Megabytes 
– Database.Database. BufferPool.Peak.Megabytes 
– Database.Database.BufferPool.PercentReadsInBuffer 

• >= 95% is desired 
• < 90% is issue 

─ Modify via: 
– NSB_BUFFER_POOL_SIZE_MB=xxx 
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Domino Configuration – Where to Look For Bottlenecks 
■ Database Cache 

─ Where Domino stores information about databases being accessed 
─ Allows Domino to read database information from cache rather than physical disk 
─ Statistics to watch: 

– Database.DbCache.CurrentEntries  
– Database.DbCache.HighWaterMark  
– Database.DbCache.MaxEntries 
– Database.DbCache.OvercrowdingRejections  

• Should be 0 on a healthy server 
─ Modify via: 

– NSF_DbCache_Maxentries=xxx 
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Domino Configuration – Where to Look For Bottlenecks 
■ Agent manager settings 

─ Max concurrent agents 
─ Max LotusScript/Java execution time 
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Domino Configuration – Where to Look for Bottlenecks 
■ Web agent settings 

─ Run web agents and web services concurrently? 
– Set to ‘Disabled’ by default 
– Can dramatically impact web applications 

 
 

 
 

■ Number of HTTP threads 
─ Http.PeakConnections 
─ Http.Workers 
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Agenda 
■ Identifying the problem 

■ Resources – what to look for 

■ Critical detective tools 

■ Alleviating bottlenecks 

■ Example time!! 
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Example 1 
■ Scenario 

─ New IBM i LPAR 
─ Three new Domino servers running on the LPAR 
─ Very slow performance on all 3 Domino servers 

– All types of operations were slow 
• Opening databases, sending emails, working with applications, … 

■ Detective steps 
─ Checked CPU utilization 

– Less than 10% 
─ Checked memory utilization 

– Very low faulting rates 
─ Checked disk utilization 

– Less than 5% 
─ Checked network 

– Response times as expected 
─ Checked Domino statistics 

– Nothing stood out 
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Example 1 (cont’d) 
■ What we know 

─ There are ample hardware resources available 
─ But they’re not being used! 
─ Domino through put is bottlenecked 
─ What would cause that?? 

■ Next steps 
─ Checked number of threads available for processing in memory pool Domino was running in 

– BINGO!! 
– Not enough threads with default settings 

■ Resolution 
─ Increased number of threads 
─ Domino performance increased dramatically 
─ CPU utilization increased 
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Example 2 
■ Initial scenario 

─ Recent upgrade of operating system (V5R4 -> V6R1) 
─ Recent upgrade of Domino (7.0.3 -> 8.5.2) 
─ Core application slow 
─ End users complaining about response times 

■ Detective steps 
─ Analyzed server performance (CPU, memory, disk) 

– No  bottlenecks found 
─ Analyzed notes.ini file 

– Found ‘PercentAvailSysResources’ set on server 
• Obsolete in Domino 8.x 

■ Next steps 
─ Removed ‘PercentAvailSysResources’ 
─ Restarted Domino server 

– Performance improves, Domino is utilizing memory much better 
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Example 2 (cont’d) 
■ Scenario after initial tuning 

─ Performance great majority of time 
─ Intermittent poor response times 

■ Detective steps 
─ Ensured system performance monitor still active 
─ Analyzed system performance data 
─ Analyzed call stacks 
─ Enabled semaphore debug 
─ Enabled Domino statistic collection 
─ Analyzed semaphore debug 
─ Analyzed Domino statistics 
─ Analyzed call stacks while performance issue occurred again 



 |    © 2012 IBM Corporation 

Example 2 (cont’d) 
■ What we know 

─ Large number of semaphore timeouts reported on the Domino server console 
─ Number of active threads for HTTP task spikes from average of 25 threads to maximum of 512 

threads 
─ Faulting in Domino memory pool spikes when problem occurs 
─ Server appears to be choking itself spending more time trying to check to see if it can now take 

its turn to process a request than performing actual work 
─ Accesses to the Agent log database causing semaphore timeouts 

■ Resolution 
─ Reduced size of Agent log database 
─ Reduced number of HTTP threads to 100 
─ Moved ODBC connection processing jobs (QSQSRVR) to separate memory pool 
─ Overall throughput improved dramatically 
─ No server performance complaints 
─ HTTP requests average 55 ms (previously were 150 ms) 
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Example 3 
■ Scenario 

─ Taking 3-4 seconds to tab from field to field in application for remote users 

■ Detective steps 
─ Enable client_clock=1 
─ Analyzed output 

 
584-150 [584]) OPEN_NOTE(REP86257959:00A51F20-NT00000796,00400000): 828 ms. 
[48+64376=64424]  
(585-150 [585]) READ_ENTRIES(REP86257959:00A51F20-NT00000796): 1062 ms. [76+55104=55180]  
(586-152 [586]) DB_MODIFIED_TIME: 78 ms. [14+68=82]  
(587-152 [587]) OPEN_NOTE(REP86257959:00A51F20-NT00000796,00400000): 813 ms. 
[48+64376=64424]  
(588-152 [588]) READ_ENTRIES(REP86257959:00A51F20-NT00000796): 844 ms. [76+55104=55180]  
(589-153 [589]) DB_MODIFIED_TIME: 78 ms. [14+68=82]  
(590-153 [590]) OPEN_NOTE(REP86257959:00A51F20-NT00000796,00400000): 828 ms. 
[48+64376=64424]  
(591-154 [591]) READ_ENTRIES(REP86257959:00A51F20-NT00000796): 812 ms. [76+55104=55180]  
(592-155 [592]) DB_MODIFIED_TIME: 109 ms. [14+68=82]  
 

─ See a pattern here?? 
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Example 3 (cont’d) 
■ What we know 

─ Same database and “note” is being opened and read from over and over 
584-150 [584]) OPEN_NOTE(REP86257959:00A51F20-NT00000796,00400000): 828 ms. 
[48+64376=64424]  
(585-150 [585]) READ_ENTRIES(REP86257959:00A51F20-NT00000796): 1062 ms. 
[76+55104=55180 

■ Next steps 
─ Use Find Note to identify note and analyze form design 

■ What we know 
─ One view opened repeatedly 
─ Found computed field doing lookup 
─ Found form property “Automatically refresh fields” set on form 

■ Resolution 
─ Changed form property  
─ Changed view involved in lookup to not rebuild more than once an hour 
─ Dramatically improved performance 
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Please remember to fill out your evaluations!! 
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Linuxfest 
Returns to 

Lotusphere! 

By Popular Demand, Linuxfest is at LS12 
What:  Linuxfest III 
When:   Thursday, 19 Jan 
Where: Dolphin, Europe 6 
Time:  12:30 - 1:30 pm 
Other:  Bring your box lunch! 
We’re not in the program guide, so mark your 
calendar 
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http://www.stevencpitcher.com/2011/10/ibm-
wants-to-hear-from-you-about-making.html 

http://www.stevencpitcher.com/2011/10/ibm-wants-to-hear-from-you-about-making.html
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