
 © 2012 IBM Corporation

BP119
Be a Lotus Domino Detective:
Tackling Your Toughest
Performance Issues

Kim Greene | President | Kim Greene Consulting, Inc.

Amy Hoerle | Senior Consultant | Kim Greene Consulting, Inc.

 | © 2012 IBM Corporation 2

Kim Greene - Introduction
■ Owner of Kim Greene Consulting, Inc.

■ Extensive iSeries background

■ Services offered include:
─System and application performance optimization
─Administration
─Upgrades
─Troubleshooting
─Health, performance, security, etc. checks
─Migrations
─Custom development
─Enterprise integration

■ Technical writer for Systems Magazine, IBM i Edition

■ Blog: www.bleedyellow.com/blogs/dominodiva

■ Twitter: iSeriesDomino

 | © 2012 IBM Corporation 3

Amy Hoerle - Introduction

■ 1st “real” job was as an AS/400 administrator in 1997

■ Worked on IBM Lotus Domino support team for 11 ½ years

■ Specializing in Lotus products on IBM i & Windows since 1999
─Installing, configuring, tuning, debugging and troubleshooting

■ DAOS expert

■ XPages development

■ Author of numerous technotes, articles and “Optimizing Domino
Administration” IBM Redbooks Wiki

■ Blog: www.bleedyellow.com/blogs/ilotusdomino

■ Twitter: iLotusDomino

 | © 2012 IBM Corporation 5

Agenda
■ Identifying the problem

■ Resources – what to look for

■ Critical detective tools

■ Alleviating bottlenecks

■ Example time!!

 | © 2012 IBM Corporation 6

Identifying The Problem

■ What is the issue?
─ How does the problem manifest itself?
─ What does the problem look like?
─ What are indicators there is a problem?
─ What is state of normalcy for:

– CPU utilization
– Disk I/O rates
– Network bandwidth
– Transactions per minute / hour
– Client or web response times

 | © 2012 IBM Corporation 7

Identifying The Problem

■ Is it repeatable?
─ Need ability to collect data to resolve the issue
─ The process of resolution is iterative

■ Perceived or real?
─ Performance data collection BEFORE problems occur is critical!

■ Certain users? Specific locations?
─ How pervasive is the problem?

– Which locations or groups are having performance issues?
─ What is the pattern of slowness?

– Daily
– Hourly
– Types of interfaces / connections

 | © 2012 IBM Corporation

Identifying The Problem

■ Where is the issue coming from?
─ A resource
─ Or resource management

 | © 2012 IBM Corporation

Identifying The Problem

■ Critical to use a layered approach to individual resources and management of
resources to isolate performance issues
─ What is the impact of each of these on the other?

CPU
utilization

Memory Disk I/O Network
I/O

0
10
20
30
40
50
60
70
80
90

100

Application
Domino
OS

 | © 2012 IBM Corporation 10

Identifying The Problem

■ Is it a throughput or bandwidth issue?
─ Throughput

– Constrained by ability to use a resource
• A resource management issue

– Tend to characterize OS or Domino / application issues
─ Bandwidth

– Constrained by not having enough resources
– Tend to characterize resource issues

■ It may be a combination of the two

 | © 2012 IBM Corporation 11

Agenda
■ Identifying the problem

■ Resources – what to look for

■ Critical detective tools

■ Alleviating bottlenecks

■ Example time!!

 | © 2012 IBM Corporation 12

CPU
■ Typically an issue of over or under consumption

■ How many CPUs are assigned?
─ Partial processors can be cause for concern

■ How configured?
─ Physical system
─ LPAR
─ VM

■ What other work is running on the server / LPAR / VM?

■ Managed via:
─ Hardware
─ Operating system
─ Domino

 | © 2012 IBM Corporation 13

CPU Too High
■ Finding the problem

─ Need to look at each component

■ Analyze thread or process using bulk of CPU to isolate root cause of CPU
consumption

■ server_show_performance=1
─ Displays server performance events on the console

 | © 2012 IBM Corporation 14

CPU Very Low
■ What is the issue?

─ Need to look at each component

■ Need to look at system as a whole to hone in where bottleneck is

■ Resource management issue

 | © 2012 IBM Corporation 15

Memory
■ Critical for optimal performance

■ High paging and faulting can dramatically impact performance of Domino

 | © 2012 IBM Corporation 16

Memory
■ Important to look at system level and Domino level

─ IBM i example

─ Drilling down further we see the memory pool involved is where all of the Domino servers are
running

 | © 2012 IBM Corporation

Disk
■ All aspects of disk I/O need to be examined

■ Assess Domino and the operating system’s impact to disk performance

 | © 2012 IBM Corporation

Disk
■ The impact of uneven disk I/O

■ Disk utilization was great, customer was running out of disk space

■ After addition of 3 much larger drives

 | © 2012 IBM Corporation 19

Disk Defragmentation – Are You Affected?
■ Monitor split I/O per second

─ Ratio for which I/Os to disk are split into more than one I/O
─ If split I/Os > 10% of total I/O = PROBLEM!!

■ Ensure operating system I/O is good before focusing on Domino I/O

 | © 2012 IBM Corporation

Network
■ One of the most difficult areas to analyze

■ Need to check many things:
─ Server configuration
─ DNS configuration and availability
─ Firewall configuration
─ Host files (if being used)
─ Connection documents

■ Network retransmissions are cause for concerns
─ Typically find to be an issue for users in specific locations

■ Avoid ARP storms
─ Ensure each NIC has its own route
─ Prevent intelligent switches from dynamically generating route tables

 | © 2012 IBM Corporation

Patterns, Patterns, Patterns ….
■ It’s all about the patterns …

 | © 2012 IBM Corporation 22

Agenda
■ Identifying the problem

■ Resources – what to look for

■ Critical detective tools

■ Alleviating bottlenecks

■ Example time!!

 | © 2012 IBM Corporation 23

Critical Detective Tools
■ System statistics

■ Domino statistics

■ DDM

■ NSDs

■ Memory dumps

■ Semaphore debug

■ Call stacks

■ Activity logging

■ Web application tools

 | © 2012 IBM Corporation

System Statistics
■ Need tool to gather statistics for system as a whole

■ Capture statistics on:
─ CPU
─ Memory
─ Disk I/O
─ Network I/O

■ Some examples
─ Perfmon
─ Perfpmr
─ nmon
─ vmstat
─ Performance navigator
─ iostat
─ netstat

 | © 2012 IBM Corporation

Domino Statistics
■ Great starting point when debugging performance issues

─ Statistics collection (statrep.nsf)
– Stats and Collect tasks

─ sh stat

■ Be sure to collect platform statistics too!!

■ Critical areas of focus:
─ Domino memory management
─ Cache sizes

– Group cache
– Name lookup cache
– Database cache

─ Transaction rates

■ Get to know “normal”

─ HTTP statistics
─ Mail statistics
─ Cluster and replication statistics
─ Queue depths
─ Full text indexing

 | © 2012 IBM Corporation

Domino Domain Monitoring (DDM)
■ Great for determining where to focus within Domino applications

─ Probe type = Application Code
─ Probe subtypes

– Agents behind schedule
– Agents evaluated by CPU usage
– Agents evaluated by memory usage
– Long running agents

─ Processes to probe = AMGR or HTTP

─ Embedded probes can be used to instrument code

 | © 2012 IBM Corporation 27

The NSD
■ Provides snapshot of what’s happening on the server when taken:

─ System activity
─ Statistics
─ Configuration
─ Stack dumps

– Shows routines or functions called for each thread in a process
─ Memcheck

– Shows how memory is being used
– System memory, handle, network, in-use database structures, files usage
– Open databases and documents

─ Other important sections
– Resource usage summary
– NSF DB-cache

 | © 2012 IBM Corporation

Call Stacks
■ Critical tool for understanding what is happening in a thread

■ Use when suspect hidden bottleneck

 Lib Name Pgm Name Mod Name Statement Procedure Name

 ---------- ---------- ---------- ---------- ---

 QSYS QLESPI QLECRTTH 0000000018 LE_Create_Thread2__FP12crtth_parm_t

 QSYS QP0WPINT QP0WSPTHR 0000000019 pthread_create_part2

 QDOMINO852 LIBNOTES THREAD 0000000020 ThreadWrapper

 QDOMINO852 LIBHTTPSTA HTTHREAD 0000000008 HTThreadBeginProc

 QDOMINO852 LIBHTTPSTA HTWRKTHR 0000000010 ThreadMain__14HTWorkerThreadFv

 QDOMINO852 LIBHTTPSTA HTEVENT 0000000002 Wait__7HTEventFUl

 QDOMINO852 LIBNOTES OSSEM 0000000009 OSWaitEvent

 QDOMINO852 LIBNOTES OSSEM 0000000089 WaitOnNativeSemaphore

 QDOMINO852 LIBNOTES OSSEM 0000000018 WaitForThreadSem

 QSYS QP0WPTHR QP0WCOND 0000000055 pthread_cond_timedwait

 QSYS QP0WPINT QP0WSCOND 0000000107 wait__PthreadConditionFP7Qp0wTcbP9QpMutex

 QSYS QP0WPINT QP0WTCB 0000000038 blockMyThread__7Qp0wTcbFiT1

 | © 2012 IBM Corporation 29

Memory Dumps
■ Provides details on memory contents

─ Find out where memory is allocated from a Domino perspective

■ Pool allocations by process ID
*** Dump of Pools for ProcessID 00000229 (HTTP)

 largest ---- P o o l A l l o c a t i o n s ---- Free List Iterations

pool addr size used free total skip search failure success frees total alloc free created

 1 D691E7024101BEC0 14648K 13911K 94% 71K 141179 116 141063 26 141037 139160 1757014 800200 956814

 2 FA83CEBEA3002000 14648K 6464K 44% 0b 35755 0 35755 0 35755 35175 403963 171251 232712 05/04/2009 09:31:22

3 process private memory pools

28 MB total pools size

19 MB total pools used

69.55% pool utilization

■ Can be helpful to determine bottlenecks and memory leaks

■ Memcheck
─ Good to use in combination with memory dumps
─ Provide details on Java memory utilization
─ Usage summary and top 10 sections are key

 | © 2012 IBM Corporation 30

MEMCHECK
■ Notes memory usage summary

<@@ ------ Notes Memory -> Usage Summary -> Shared Memory Stats :: (Shared) (Time 16:26:20) ------ @@>

TYPE : Count SIZE ALLOC FREE FRAG OVERHEAD %used %free

Static-DPOOL: 49 496194304 472697000 23439088 0 114034 95% 4%

VPOOL : 82 5002704 486884 4295456 0 222108 9% 85%

POOL : 93 5377312 2124984 2778016 0 479224 39% 51%

Overall : 49 496194304 465623528 30512560 0 815366 93% 6%

■ Top 10 memory block usage
<@@ ------ Notes Memory -> Usage Summary -> Top 10 Memory Block Usage -> Memhandles By Size :: (Shared) (Time 16:26:20) ------ @@>

Type TotalSize Count Typename

0x82cd 417243136 106 BLK_UBMBUFFER

0x82cc 8140800 106 BLK_UBMBCB

0x8252 4194322 4 BLK_NSF_POOL

0x8a05 3000000 1 BLK_NET_SESSION_TABLE

0x8439 2919518 313 BLK_BPOOL_PERPROCESS_INFO

0x834a 2621442 3 BLK_GB_CACHE

0x841c 2004708 116 BLK_VARRAY_CHUNK

0x826d 1048576 1 BLK_NSF_DIRMANPOOL

0x8252 1048576 1 BLK_NSF_POOL

x8311 1048576 1 BLK_NIF_POOL

 | © 2012 IBM Corporation 31

Semaphore Debug
■ Semaphore defined

─ Software switch that ensures the synchronization of execution of tasks to ensure one process
has completed before another begins

■ Semaphore timeout
─ Occurs when a resource has been locked for too long

– By default, this is 30 seconds

■ Enable semaphore debug to determine root cause of problem
─ DEBUG_THREADID=1

– Helpful to identify process or thread holding a semaphore
─ DEBUG_CAPTURE_TIMEOUT=1
─ DEBUG_SHOW_TIMEOUT=1
─ DEBUG_SEM_TIMEOUT=X

– Use to specify how long a semaphore must timeout before being reported

■ What to look for
─ Slow processes
─ Databases with long locks

 | © 2012 IBM Corporation

Activity Logging and Activity Trends
■ Records user activity by:

─ Person
─ Database
─ Access protocol

■ Enabled in the configuration document

■ Great for debugging performance slowdowns and CPU spikes
─ Activity recorded allows determination if:

– Specific application caused CPU spike or performance slowdown
– Spike in user activity is cause of CPU spike or performance slowdown

■ A great way to:
─ Compare workloads across servers
─ Compare user activity over time

 | © 2012 IBM Corporation

Web Application Tools
■ tell http show thread state

─ Determine what forms, views or agents are associated with HTTP requests

■ Example usage
─ Agents

– Is it an issue with agent concurrency?
─ Forms

– What type of lookups are being done?
• Lookup source can have dramatic impact on performance

– Profile document lookup compared to pulled from view in external database
─ Views

– Which views are being used?
– How large are the views?
– How frequently should a view be updated?
– What is the view update setting?
– Is enough memory available for the view

• Need 2 times the view size for optimal view rebuild time

 | © 2012 IBM Corporation 34

Agenda
■ Identifying the problem

■ Resources – what to look for

■ Critical detective tools

■ Alleviating bottlenecks

■ Example time!!

 | © 2012 IBM Corporation 35

Alleviating Bottlenecks
■ Critical things to remember:

─ Relieving bottleneck in one area, may cause new bottleneck to appear
─ Resolution of an issue may be dependent on what appears to be a totally unrelated area
─ It’s an iterative process

 | © 2012 IBM Corporation

Domino Configuration – Where to Look For Bottlenecks
■ Number of worker threads and concurrent thread processing

─ Server threads
– Number of servers threads available for processing

• Server.Users.Peak
• Server.WorkThreads

– Need sufficient threads for number of users
– Default size: Server_Pool_Tasks * # of NRPC ports

─ Server_Max_Concurrent_Trans
– Controls number of threads allowed to execute at the same time
– Default size: 20

─ Server_Pool_Tasks
– Controls number of threads in IOCP thread pool
– Check these statistics:

• Server.ConcurrentTasks
• Server.ConcurrentTasks.Waiting

– Should be no waiting
– Default size: Server_Max_Concurrent_Trans * 2

 | © 2012 IBM Corporation

Domino Configuration – Where to Look For Bottlenecks
■ Unified Buffer Manager

─ Critical Domino buffer pool, buffers data between disk and the NIF
─ Statistics to watch:

– Database.Database.BufferPool.Maximum.Megabytes
– Database.Database. BufferPool.Peak.Megabytes
– Database.Database.BufferPool.PercentReadsInBuffer

• >= 95% is desired
• < 90% is issue

─ Modify via:
– NSB_BUFFER_POOL_SIZE_MB=xxx

 | © 2012 IBM Corporation

Domino Configuration – Where to Look For Bottlenecks
■ Database Cache

─ Where Domino stores information about databases being accessed
─ Allows Domino to read database information from cache rather than physical disk
─ Statistics to watch:

– Database.DbCache.CurrentEntries
– Database.DbCache.HighWaterMark
– Database.DbCache.MaxEntries
– Database.DbCache.OvercrowdingRejections

• Should be 0 on a healthy server
─ Modify via:

– NSF_DbCache_Maxentries=xxx

 | © 2012 IBM Corporation 39

Domino Configuration – Where to Look For Bottlenecks
■ Agent manager settings

─ Max concurrent agents
─ Max LotusScript/Java execution time

 | © 2012 IBM Corporation

Domino Configuration – Where to Look for Bottlenecks
■ Web agent settings

─ Run web agents and web services concurrently?
– Set to ‘Disabled’ by default
– Can dramatically impact web applications

■ Number of HTTP threads
─ Http.PeakConnections
─ Http.Workers

 | © 2012 IBM Corporation 41

Agenda
■ Identifying the problem

■ Resources – what to look for

■ Critical detective tools

■ Alleviating bottlenecks

■ Example time!!

 | © 2012 IBM Corporation

Example 1
■ Scenario

─ New IBM i LPAR
─ Three new Domino servers running on the LPAR
─ Very slow performance on all 3 Domino servers

– All types of operations were slow
• Opening databases, sending emails, working with applications, …

■ Detective steps
─ Checked CPU utilization

– Less than 10%
─ Checked memory utilization

– Very low faulting rates
─ Checked disk utilization

– Less than 5%
─ Checked network

– Response times as expected
─ Checked Domino statistics

– Nothing stood out

 | © 2012 IBM Corporation

Example 1 (cont’d)
■ What we know

─ There are ample hardware resources available
─ But they’re not being used!
─ Domino through put is bottlenecked
─ What would cause that??

■ Next steps
─ Checked number of threads available for processing in memory pool Domino was running in

– BINGO!!
– Not enough threads with default settings

■ Resolution
─ Increased number of threads
─ Domino performance increased dramatically
─ CPU utilization increased

 | © 2012 IBM Corporation

Example 2
■ Initial scenario

─ Recent upgrade of operating system (V5R4 -> V6R1)
─ Recent upgrade of Domino (7.0.3 -> 8.5.2)
─ Core application slow
─ End users complaining about response times

■ Detective steps
─ Analyzed server performance (CPU, memory, disk)

– No bottlenecks found
─ Analyzed notes.ini file

– Found ‘PercentAvailSysResources’ set on server
• Obsolete in Domino 8.x

■ Next steps
─ Removed ‘PercentAvailSysResources’
─ Restarted Domino server

– Performance improves, Domino is utilizing memory much better

 | © 2012 IBM Corporation

Example 2 (cont’d)
■ Scenario after initial tuning

─ Performance great majority of time
─ Intermittent poor response times

■ Detective steps
─ Ensured system performance monitor still active
─ Analyzed system performance data
─ Analyzed call stacks
─ Enabled semaphore debug
─ Enabled Domino statistic collection
─ Analyzed semaphore debug
─ Analyzed Domino statistics
─ Analyzed call stacks while performance issue occurred again

 | © 2012 IBM Corporation

Example 2 (cont’d)
■ What we know

─ Large number of semaphore timeouts reported on the Domino server console
─ Number of active threads for HTTP task spikes from average of 25 threads to maximum of 512

threads
─ Faulting in Domino memory pool spikes when problem occurs
─ Server appears to be choking itself spending more time trying to check to see if it can now take

its turn to process a request than performing actual work
─ Accesses to the Agent log database causing semaphore timeouts

■ Resolution
─ Reduced size of Agent log database
─ Reduced number of HTTP threads to 100
─ Moved ODBC connection processing jobs (QSQSRVR) to separate memory pool
─ Overall throughput improved dramatically
─ No server performance complaints
─ HTTP requests average 55 ms (previously were 150 ms)

 | © 2012 IBM Corporation

Example 3
■ Scenario

─ Taking 3-4 seconds to tab from field to field in application for remote users

■ Detective steps
─ Enable client_clock=1
─ Analyzed output

584-150 [584]) OPEN_NOTE(REP86257959:00A51F20-NT00000796,00400000): 828 ms.
[48+64376=64424]
(585-150 [585]) READ_ENTRIES(REP86257959:00A51F20-NT00000796): 1062 ms. [76+55104=55180]
(586-152 [586]) DB_MODIFIED_TIME: 78 ms. [14+68=82]
(587-152 [587]) OPEN_NOTE(REP86257959:00A51F20-NT00000796,00400000): 813 ms.
[48+64376=64424]
(588-152 [588]) READ_ENTRIES(REP86257959:00A51F20-NT00000796): 844 ms. [76+55104=55180]
(589-153 [589]) DB_MODIFIED_TIME: 78 ms. [14+68=82]
(590-153 [590]) OPEN_NOTE(REP86257959:00A51F20-NT00000796,00400000): 828 ms.
[48+64376=64424]
(591-154 [591]) READ_ENTRIES(REP86257959:00A51F20-NT00000796): 812 ms. [76+55104=55180]
(592-155 [592]) DB_MODIFIED_TIME: 109 ms. [14+68=82]

─ See a pattern here??

 | © 2012 IBM Corporation

Example 3 (cont’d)
■ What we know

─ Same database and “note” is being opened and read from over and over
584-150 [584]) OPEN_NOTE(REP86257959:00A51F20-NT00000796,00400000): 828 ms.
[48+64376=64424]
(585-150 [585]) READ_ENTRIES(REP86257959:00A51F20-NT00000796): 1062 ms.
[76+55104=55180

■ Next steps
─ Use Find Note to identify note and analyze form design

■ What we know
─ One view opened repeatedly
─ Found computed field doing lookup
─ Found form property “Automatically refresh fields” set on form

■ Resolution
─ Changed form property
─ Changed view involved in lookup to not rebuild more than once an hour
─ Dramatically improved performance

 | © 2012 IBM Corporation

Please remember to fill out your evaluations!!

 | © 2012 IBM Corporation

Linuxfest
Returns to

Lotusphere!

By Popular Demand, Linuxfest is at LS12
What: Linuxfest III
When: Thursday, 19 Jan
Where: Dolphin, Europe 6
Time: 12:30 - 1:30 pm
Other: Bring your box lunch!
We’re not in the program guide, so mark your
calendar

 | © 2012 IBM Corporation

http://www.stevencpitcher.com/2011/10/ibm-
wants-to-hear-from-you-about-making.html

http://www.stevencpitcher.com/2011/10/ibm-wants-to-hear-from-you-about-making.html

	BP119 �Be a Lotus Domino Detective: Tackling Your Toughest Performance Issues
	Kim Greene - Introduction
	Amy Hoerle - Introduction
	Agenda
	Identifying The Problem
	Identifying The Problem
	Identifying The Problem
	Identifying The Problem
	Identifying The Problem
	Agenda
	CPU
	CPU Too High
	CPU Very Low
	Memory
	Memory
	Disk
	Disk
	Disk Defragmentation – Are You Affected?
	Network
	Patterns, Patterns, Patterns ….
	Agenda
	Critical Detective Tools
	System Statistics
	Domino Statistics
	Domino Domain Monitoring (DDM)
	The NSD
	Call Stacks
	Memory Dumps
	MEMCHECK
	Semaphore Debug
	Activity Logging and Activity Trends
	Web Application Tools
	Agenda
	Alleviating Bottlenecks
	Domino Configuration – Where to Look For Bottlenecks
	Domino Configuration – Where to Look For Bottlenecks
	Domino Configuration – Where to Look For Bottlenecks
	Domino Configuration – Where to Look For Bottlenecks
	Domino Configuration – Where to Look for Bottlenecks
	Agenda
	Example 1
	Example 1 (cont’d)
	Example 2
	Example 2 (cont’d)
	Example 2 (cont’d)
	Example 3
	Example 3 (cont’d)
	Slide Number 49
	Slide Number 50
	Slide Number 51

